BRANDON HANSON, UGA

A better-than-Plunnecke bound for $A+2 A$
If A is a finite set in an abelian group, we can measure the additive structure of A by the size of its doubling constant, $K=|A+A| /|A|$. Plunnecke's inequality lets us measure the size of iterated sumsets in terms of K, and in particular it tells us that $|A+A+A| \leq K^{3}|A|$. The set $A+2 A=\{a+b+b: a, b \in A\}$ is a subset of $A+A+A$ and so the upper bound $K^{3}|A|$ applies. In this talk, I will describe recent work with G. Petridis where we prove that in fact $|A+2 A| \leq K^{2.95}|A|$, answering a question of B. Bukh.

