SURESH ESWARATHASAN, Dalhousie University

Entropy of ϵ -logarithmic quasimodes

Consider (M,g) a hyperbolic surface without boundary and its semiclassical Laplacian $-\hbar^2\Delta_g$. It has been shown that for sequences of $-\hbar^2\Delta_g$ -eigenfunctions $\{\psi_\hbar\}_\hbar$ (with central energy E>0) and corresponding semiclassical measure μ_{sc} , the Kolmogorov-Sinai entropy $H_{KS}(\mu_{sc})$ is bounded below by $\frac{1}{2}$.

In this talk, we discuss the semiclassical measures μ_{sc} of special sums of $-\hbar^2\Delta_g$ eigenfunctions, namely ϵ -logarithmic quasi-modes Ψ_\hbar (with central energy E>0) where $\epsilon>0$. We show that for any $c\in[0,\frac12]$, there exists $\epsilon=\epsilon(c)$ and a family of $\{\Psi_\hbar\}_\hbar$ of ϵ -logarithmic quasimodes whose $H_{KS}(\mu_{sc})$ is bounded below by c. This continues/generalizes some work of Anantharaman-Koch-Nonnenmacher, amongst others.