RICK JARDINE, University of Western Ontario

Persistent homotopy theory

Suppose that $X \subset Y$ are data sets in a metric space Z, and suppose that r > 0. A theorem of Blumberg-Lesnick asserts that if $y \in Y$ satisfies d(x, y) < r for some $x \in X$, then the inclusion of systems $V(X) \subset V(Y)$ has homotopy interleaving distance < 2r. This result can be proved with an order complex argument.

A bounded distance criterion for the inclusion $X_{dis}^{k+1} \subset Y_{dis}^{k+1}$ of subsets of k+1 distinct points for X and Y implies that the inclusion of systems $L_{*,j}(X) \subset L_{*,j}(Y)$ has a homotopy interleaving distance < 2r, for $j \le k$.

The space D(Z) of finite subsets of a metric space Z is the platform for the Blumberg-Lesnick stability theorem. Homotopy interleavings for inclusions of systems $V(X) \subset V(Y)$ specify the local behaviour of these systems for $X \subset Y$, as Y approaches X in the Hausdorff metric on D(Z).