RACHAEL ALVIR, University of Notre Dame Scott Complexity and Finitely α -generated Structures

Every countable structure is \aleph_0 -categorical in $L_{\omega_1\omega}$ and axiomatized by a single sentence called its *Scott Sentence*. A normal form exists for formulas of $L_{\omega_1\omega}$, so each formula is equivalent to a Π_{α} or Σ_{α} one for some α . A conjunction of a Σ_{α} and a Π_{α} sentence is d- Σ_{α} .

Every finitely generated structure A has a Σ_3 Scott sentence, but combining the results of [2] and [1] shows A has a d- Σ_2 Scott sentence iff A is self-reflective iff a generating tuple has a Π_1 -definable automorphism orbit. In this talk, we show a structure with a $\Sigma_{\alpha+2}$ Scott sentence and no $\Pi_{\alpha+1}$ Scott sentence generalizes a finitely generated structure, and call such structures *finitely* α -generated. We show a finitely α -generated structure has a d- $\Sigma_{\alpha+1}$ Scott sentence iff it is α -reflective iff some α -generator has a Π_{α} -definable automorphism orbit.

Montalbán has suggested (recent folklore) that a structure A's complexity, in the sense intended by Scott rank, is measured by computing the least λ, Γ such that A has a Σ_{λ} Scott sentence and some tuple witnessing this fact has a Γ -definable automorphism orbit. Our result shows A's least complexity Scott sentence determines this information.

References

- [1] RACHAEL ALVIR, JULIA KNIGHT, AND CHARLES MCCOY, Complexiy of Scott sentences, Forthcoming.
- [2] MATTHEW HARRISON-TRAINOR AND MENG-CHE HO, On optimal Scott sentences of finitely generated algebraic structures, Proceedings of the American mathematical society, vol. 146 (2018), no. 10, pp. 4473–4485.