ASKOLD KHOVANSKII, University of Toronto

Newton polyhedron and hypersurfaces in toric varieties
With a compact smooth toric variety M and a fixed positive 0 -cycle A (a fixed finite set of points equipped with positive integral multiplicities) belonging to the union M^{1} of one-dimensional orbits of M one can associate the following problem: find all hypersurfaces $H \subset M$ such that H does not pass through null-dimensional orbits and the intersection of H with M^{1} is the 0 -cycle A.
This problem was solved in the case when $\operatorname{dim} M=2$ in [1]. Let M_{O} be the closure in M of an orbit O. Let A_{O} be the 0 -cycle $A \cap M_{O}$.
Theorem. The problem has at least one solution H if and only if for each two-dimensional orbit O the problem for the toric surface M_{O} and the 0-cycles A_{O} has at least one solution.
Moreover the intersection of any solution H with the torus $\left(\mathbb{C}^{*}\right)^{n}$ can be defined by equation $Q=0$ where Q is a Laurent polynomial whose Newton polyhedron Δ and coefficients at monomials belonging to edges of Δ can be found explicitly and whose coefficients at all other monomials in Δ are arbitrary complex numbers.

References

1. A. Khovanskii. Newton polygons, curves on torus surfaces, and the converse Weil theorem, Russian Math. Surveys 52 (1997), no. 6, 1251-1279.
