ROBERT SMITH?, The University of Ottawa

Using non-smooth models to determine thresholds for microbial pest management

Releasing infectious pests could successfully control and eventually maintain the number of pests below a threshold level. To address this from a mathematical point of view, two non-smooth microbial pest-management models with threshold policy are pro- posed and investigated in the present paper. First, we establish an impulsive model with state-dependent control to describe the cultural control strategies, including releasing infectious pests and spraying chemical pesticide. We examine the existence and stability of an order-1 periodic solution, the existence of order-k periodic solutions and chaotic phenomena of this model by analyzing the properties of the Poincaré map. Secondly, we establish and analyze a Filippov model. By examining the sliding dynamics, we investigate the global stability of both the pseudo-equilibria and regular equilibria. The findings suggest that we can choose appropriate threshold levels and control intensity to maintain the number of pests at or below the economic threshold. The modelling and control outcomes presented here extend the results for the system with impulsive interventions at fixed moments.