BRADEN STRACHAN, University of Calgary

Illumination number of the unconditionally symmetric 3-dimensional cap body of a ball

Cap body of a ball in \mathbb{E}^d (as introduced by Minkowski in 1903) is a convex hull of an origin centered euclidean closed unit ball $B^d(o)$ and a countable set of points outside of the ball $\{p_1,p_2,\dots\}\in\mathbb{E}^d\setminus B^d(o)$ such that for any two points p_i,p_j the segment $[p_i,p_j]$ has a nonempty intersection with $B^d(o)$.

Unconditionally symmetric convex body in \mathbb{E}^d is a body that together with every one of its point with coordinates (x_1,\ldots,x_d) also contains all the points with coordinates $(\pm x_1,\ldots,\pm x_d)$. In my talk, I will show that 6 illumination directions are enough to completely illuminate the boundary of an unconditionally symmetric cap body of a ball in \mathbb{E}^3 .