AMANDA MONTEJANO, UNAM

Zero-sum subsequences in bounded-sum $\{-1,1\}$-sequences
In this talk, we consider problems and results that go in the opposite direction of the classical theorems in the discrepancy theory. The following statement gives a flavor of our approach. Let t, k and q be integers such that $q \geq 0,0 \leq t<k$, and $t \equiv k(\bmod 2)$, and take $s \in[0, t+1]$ as the unique integer satisfying $s \equiv q+\frac{k-t-2}{2}(\bmod (t+2))$. Then, for any integer

$$
n \geq \frac{1}{2(t+2)} k^{2}+\frac{q-s}{t+2} k-\frac{t}{2}+s
$$

and any function $f:[n] \rightarrow\{-1,1\}$ with $\left|\sum_{i=1}^{n} f(i)\right| \leq q$, there is a block of k consecutive terms (k-block) $B \subset[n]$ with $\left|\sum_{x \in B}^{n} f(x)\right| \leq t$. Moreover, this bound is sharp for all the parameters involved and a characterization of the extremal sequences is given. This is a joint work with Yair Caro and Adriana Hansberg.

