MOHAMMAD SHIRAZI, University of Manitoba

Grunsky Operator and Inequality for Open Riemann Surfaces with Finite Borders

Consider an open Riemann surface Σ of genus g > 0 with n > 1 borders, each one homeomorphic to the unit circle. The surface Σ can be described as a compact Riemann surface \mathcal{R} of the same genus g, from which n simply-connected domains $\Omega_1, \ldots, \Omega_n$, removed; that is, $\Sigma = \mathcal{R} \setminus \cup cl(\Omega_k)$. Fix conformal maps f_k from the unit disc \mathbb{D} onto $\Omega_k, k = 1, \ldots, n$. We may assume each f_k has a quasiconformal extension to an open neighbourhood of \mathbb{D} . Let $\mathbf{f} = (f_1, \ldots, f_n)$.

I will define the *Grunsky operator* $Gr_{\mathbf{f}}$ corresponding to \mathbf{f} (equivalently to Σ) on some Dirichlet spaces when all the boundary curves are quasicircles in \mathcal{R} . I will show that the norm of the Grunsky operator is less than or equal to one. This is a generalization of the classical *Grunsky inequalities* from the planar case to bordered Riemann surfaces described above. Joint work with E. Schippers and W. Staubach.