Let Σ be a compact connected oriented 2-manifold of genus $g \geq 2$, and let p be a point on Σ. We define a space $S_g(t)$ consisting of certain irreducible representations of the fundamental group of $\Sigma \setminus p$, modulo conjugation by $SU(n)$. This space has interpretations in algebraic geometry, gauge theory and topological quantum field theory; in particular if Σ has a Kahler structure then $S_g(t)$ is the moduli space of parabolic vector bundles of rank n over Σ. For $n = 2$, Weitsman considered a tautological line bundle on $S_g(t)$, and proved that the $2g^{th}$ power of its first Chern class vanishes, as conjectured by Newstead. In this talk I will present his proof and outline my extension of his work to $SU(n)$ and to $SO(2n + 1)$. I will also explore the case where Σ has multiple marked points.