THOMAS KUCERA, University of Manitoba

Saturated Free Algebras and Almost Indiscernible Theories

[With Anand Pillay, University of Notre Dame.]

We extend to uncountable languages the studies of the model theory of saturated free algebras in countable languages by [Baldwin, Shelah (1983)], and generalizations by [Pillay, Sklinos (2015)].

A theory T of cardinality τ is (μ, κ) -almost indiscernible $(1 \le \mu \le \tau < \kappa)$ if T has a saturated model of power κ which is the algebraic closure of an indiscernible set of μ -tuples. T is (μ, κ) -almost indiscernible iff T is (μ, τ^+) -almost indiscernible.

Any such theory T is superstable, stable in all cardinalities $\lambda \geq \tau$, and non-multidimensional. There is a pairwise orthogonal family \mathcal{R} of regular types over M_{τ} , the τ -saturated model of cardinality τ , and a corresponding family \mathcal{W} of types of maximal weight one sets over M_{τ} , such that any $N \succeq M_{\tau}$ is prime over M_{τ} and an independent family of realizations of types in \mathcal{R} , and is the algebraic closure of M_{τ} and an independent family of realizations of types in \mathcal{W} .

In a saturated free algebra in an uncountable language, the type of a basis element is well-defined. We conjecture that for an arbitrary such theory: it is totally transcendental, one-based, with quantifer elimination down to primitive formulas, and with finite Morley rank.

We have sharper results for theories of modules.