CAMILA FABRE SEHNEM,

On C^* -algebras associated to product systems

Many examples of product systems arise from actions of semigroups by endomorphisms of a C*-algebra. In this talk, assuming that P is a unital subsemigroup of a group G, we will define the covariance algebra of a product system $\mathcal{E} = (\mathcal{E}_p)_{p \in P}$ over a C*-algebra A, which is constructed out of a gauge-invariant ideal of the Toeplitz algebra of \mathcal{E} . The covariance algebra, denoted by $A \times_{\mathcal{E}} P$, does not depend on the group G. We will discuss further properties of a covariance algebra: under the appropriate assumptions, a representation of $A \times_{\mathcal{E}} P$ in a C*-algebra is injective if and only if it is injective on A. In particular, this may be viewed as a generalization of a Cuntz-Pimsner algebra of a single correspondence. We will also see examples of C*-algebras in the setting of irreversible C*-dynamical systems that can be described as a covariance algebra of a product system.