TIM ALDERSON, University of New Brunswick Saint John

Maximum and Full Weight Spectrum Codes
In the recent work [3], a combinatorial problem concerning linear codes over a finite field \mathbb{F}_{q} was introduced. In that work the authors studied the weight set of an $[n, k]_{q}$ linear code, that is the set of non-zero distinct Hamming weights, showing that its cardinality is upper bounded by $\frac{q^{k}-1}{q-1}$. Codes meeting this bound are said to be maximum weight spectrum (MWS) codes. Shi et. al. showed that MWS codes exist in the case $q=2$, and in the case $k=2$. They conjectured that MWS codes exist for every prime power q and every positive integer k. In this talk I discuss bounds on the length of MWS codes, and in the process, prove the conjecture. I also discuss a related question regarding full weight spectrum (FWS) codes, which are those codes having codewords of each weight less than or equal to n. Results discussed may be found in $[1,2]$.
[1] TA, A note on full weight spectrum codes, Transactions on Combinatorics, (to appear).
[2] TA, and Alessandro Neri, Maximum weight spectrum codes,Advances in Mathematics of Communications, (to appear).
[3] Minjia Shi, Hongwei Zhu, Patrick Solé, and Gérard D. Cohen, How many weights can a linear code have?, Designs, Codes and Cryptography, May 2018.

