AMANDA MONTEJANO, UNAM

A rainbow version of Mantel's Theorem
One of the first results in extremal graph theory, Mantel's Theorem, asserts that a simple n vertex graph with more than $\frac{1}{4} n^{2}$ edges has a triangle (three mutually adjacent vertices), and this bound is best possible. Here we consider a colourful variant of the above. Let G_{1}, G_{2}, G_{3} be three graphs on a common vertex set V and think of each graph as having edges of a distinct colour. Define a rainbow triangle to be three vertices $v_{1}, v_{2}, v_{3} \in V$ so that $v_{i} v_{i+1} \in E\left(G_{i}\right)$ (where the indices are treated modulo 3). We will be interested in determining how many edges force the existence of a rainbow triangle. We prove that whenever $\left|E\left(G_{i}\right)\right|>\left(\frac{26-2 \sqrt{7}}{81}\right) n^{2} \approx 0.2557 n^{2}$ for $1 \leq i \leq 3$, then there exist a rainbow triangle. We provide an example to show this bound is best possible. This is a joint work with Ron Aharoni, Matt DeVos, Sebastian Gonzales and Robert Samal.

