EUGENE FILATOV, Simon Fraser University

Quaternion Algebras and the Burkhardt Quartic
The Burkhardt quartic threefold in \mathbb{P}^{4} is given by

$$
B: f\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right):=y_{0}\left(y_{0}^{3}+y_{1}^{3}+y_{2}^{3}+y_{3}^{3}+y_{4}^{3}\right)+3 y_{1} y_{2} y_{3} y_{4}=0 .
$$

This variety has been studied extensively since 1890 (originally by Heinrich Burkhardt), and has several different characterizations. Points on the Burkhardt quartic correspond to the class of curves that admit a model of the form $y^{2}=h(x)$ where h is a squarefree polynomial of degree 6 , together with 40 decompositions of the form

$$
h(x)=G(x)^{2}+\lambda H(x)^{3} .
$$

Part of this correspondence involves marking 6 points on a conic C, and in order to obtain 6 corresponding points on \mathbb{P}^{1} for defining h, it is necessary that C has a k-rational point. The Burkhardt has another, natural symmetric model $B^{\prime} \subset \mathbb{P}^{5}$ given by

$$
B^{\prime}: \sigma_{1}\left(y_{0}, \ldots, y_{5}\right)=\sigma_{4}\left(y_{0}, \ldots, y_{5}\right)=0
$$

where the σ_{i} are elementary symmetric functions. This model and the original Burkhardt are isomorphic over \mathbb{C} (in fact over $\mathbb{Q}\left(\zeta_{3}\right)$), so they are geometrically equivalent. However, they are not isomorphic over \mathbb{Q}. In other words, B^{\prime} is a nontrivial twist of B. Several properties over \mathbb{Q} change drastically upon twisting the Burkhardt, in particular whether or not the conic C has \mathbb{Q}-rational points (for instance when obtained from B it does, while from B^{\prime} there are local obstructions over \mathbb{R} and \mathbb{Q}_{3}).

