CALEB MARSHALL, Missouri State University

Chains of Dot Products over Finite Point Sets in \mathbb{R}^2

Given a finite point set $\Lambda \subset \mathbb{R}^2$, we examine the behavior of successive dot products between sequences of distinct points. Fix $k \in \mathbb{N}$. Now, let $\{\alpha_i\}_{i=1}^k$ be a sequence of numbers, $0 < \alpha_i < 1$, and let $\{R_i\}_{i=1}^{k+1}$ be a sequence of points such that $R_i \cdot R_{i+1} = \alpha_i$ for each $1 \le i \le k+1$. Then, together, we call the sequences $\{\alpha_i\}_{i=1}^k$, $\{R_i\}_{i=1}^{k+1}$ a *k*-chain. Now, given that $\#\Lambda = N$, we prove that, for fixed k, the maximum number of k-chains that can exist over Λ is $N^{\frac{4}{3}(\lceil \frac{k+1}{2} \rceil)}$. We also construct a point-set which sharpens this bound in \mathbb{R}^2 . Finally, we explore extensions of this result, and its motivations in questions of Euclidean distances originally proposed by Paul Erdős.