CALEB MARSHALL, Missouri State University

Chains of Dot Products over Finite Point Sets in \mathbb{R}^{2}
Given a finite point set $\Lambda \subset \mathbb{R}^{2}$, we examine the behavior of successive dot products between sequences of distinct points. Fix $k \in \mathbb{N}$. Now, let $\left\{\alpha_{i}\right\}_{i=1}^{k}$ be a sequence of numbers, $0<\alpha_{i}<1$, and let $\left\{R_{i}\right\}_{i=1}^{k+1}$ be a sequence of points such that $R_{i} \cdot R_{i+1}=\alpha_{i}$ for each $1 \leq i \leq k+1$. Then, together, we call the sequences $\left\{\alpha_{i}\right\}_{i=1}^{k},\left\{R_{i}\right\}_{i=1}^{k+1}$ a k-chain. Now, given that $\# \Lambda=N$, we prove that, for fixed k, the maximum number of k-chains that can exist over Λ is $N^{\frac{4}{3}\left(\left\lceil\frac{k+1}{2}\right\rceil\right) \text {. We also construct }}$ a point-set which sharpens this bound in \mathbb{R}^{2}. Finally, we explore extensions of this result, and its motivations in questions of Euclidean distances originally proposed by Paul Erdős.

