JUNHO CHOI, UNIST

On Boundary Layers for the Burgers Equations in a Bounded Domain

As a simplified model derived from the Navier-Stokes equations, we consider the viscous Burgers equations in a bounded domain with two-point boundary conditions.

$$u_t^{\epsilon} - \epsilon u_{xx} + \frac{(u^{\epsilon})^2}{2} = f(x, t), \quad x \in (0, 1), \quad t \ge 0$$

$$u^{\epsilon}(x, 0) = u_0(x), \quad x \in (0, 1),$$

$$u^{\epsilon}(0, t) = g(t), \quad t \ge 0,$$

$$u^{\epsilon}(1, t) = h(t), \quad t \ge 0.$$

(1)

We investigate the singular behaviors of their solutions u^{ϵ} as the viscosity parameter ϵ gets smaller. Indeed, when ϵ gets smaller, u_x^{ϵ} has $1/\epsilon$ order slope. So controlling the sharp slopes is one of the most important parts in this research.

The idea is constructing the asymptotic expansions in the order of the ϵ and validating the convergence of the expansions to the solutions u^{ϵ} as $\epsilon \to 0$ in $L^2(0,T; H^1((0,1)))$ space. In this article, we consider the case where sharp slopes occur at the boundaries, i.e. boundary layers, and we fully analyse the convergence at any order of ϵ using the so-called boundary layer correctors as follows.

In the end, we also numerically verify the convergences.