MASAHIRO IKEDA, RIKEN AIP Center

Well-posedness of fourth-order Schrödinger equation with derivative nonlinearities

In this talk, we study well-posedness of the Cauchy problem to the forth-order nonlinear Schrödinger equations with $\gamma \in \{1,2,3\}$ -times derivative nonlinearities in Sobolev space $H^s(\mathbb{R})$:

$$\begin{cases}
i\partial_t u + \partial_x^4 u = G\left((\partial_x^k u)_{k \le \gamma}, (\partial_x^k \bar{u})_{k \le \gamma}\right), & (t, x) \in I \times \mathbb{R}, \\
u|_{t=0} = u_0 \in H^s(\mathbb{R}),
\end{cases}$$
(1)

where $u:I\times\mathbb{R}\to\mathbb{C}$ is an unknown function, I:=[-T,T] denotes the existence time interval of the function $u,u_0\in H^s(\mathbb{R})$ is a prescribed function, and for $s\in\mathbb{R}$, $H^s(\mathbb{R})$ denotes $L^2(\mathbb{R})$ -based Sobolev space. For $m\in\mathbb{N}$ with $m\geq 3$, we mainly consider the m-th order nonlinearity G of the form

$$G(z) = G(z_1, \cdots, z_{2(\gamma+1)}) := \sum_{|\alpha|=m} C_{\alpha} z^{\alpha},$$

where $C_{\alpha} \in \mathbb{C}$ with $\alpha \in (\mathbb{N} \cup \{0\})^{2(\gamma+1)}$ are constants. The purpose of this talk is to improve the previous results obtained by several Mathematicians, that is, to treat more general nonlinearity and to prove local well-posedness of the problem in lower order Sobolev space $H^s(\mathbb{R})$. Our proof of the well-posedness result is based on the contraction argument on a suitable function space, via the Strichartz estimates, Kato-type smoothing estimates, Kenig-Ruiz estimates, Maximal function estimates, a linear estimate for inhomogeneous term, the bilinear Strichartz type estimate and the Littlewood-Paley theory.