BILL MARTIN, Worcester Polytechnic Institute
Some recent results on Q-polynomial (cometric) association schemes
Let X be a finite set of size v and let $\mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}$ be a partition of $X \times X$ into $d+1$ symmetric binary relations with R_{0} equal to the identity relation on X. The pair (X, \mathcal{R}) is called a symmetric d-class association scheme provided there exist integers $p_{i j}^{k}(0 \leq i, j, k \leq d)$ such that whenever $a, b \in X$ with $(a, b) \in R_{k}$, we have $\left|\left\{c \in X:(a, c) \in R_{i},(c, b) \in R_{j}\right\}\right|=$ $p_{i j}^{k}$. If A_{i} is the 01-matrix with rows and columns indexed by X and (a, b)-entry equal to one iff $(a, b) \in R_{i}$, then the BoseMesner algebra of the association scheme is given by $\mathbb{A}=\left\langle A_{0}, \ldots, A_{d}\right\rangle$. This matrix algebra admits a basis $\left\{E_{0}, E_{1}, \ldots, E_{d}\right\}$ satisfying $E_{i} E_{j}=\delta_{i, j} E_{i}$. The Schur (or entrywise) product of any two of these idempotents belongs to \mathbb{A} so there exist scalars $q_{i j}^{k}(0 \leq i, j, k \leq d)$ satisfying

$$
\begin{equation*}
E_{i} \circ E_{j}=\frac{1}{v} \sum_{k=0}^{d} q_{i j}^{k} E_{k} \tag{1}
\end{equation*}
$$

An association scheme (X, \mathcal{R}) is cometric (or Q-polynomial) if there exists an ordering E_{0}, \ldots, E_{d} with respect to which $q_{i j}^{k}=0$ whenever $k>i+j$, and $q_{i j}^{k} \neq 0$ whenever $k=i+j$. In this talk, we explore the spherical code formed by the columns of E_{1} and establish inequalities for certain valencies of the (regular) graphs (X, R_{i}) and the class number d in terms of its rank.

