MAXIM BURKE, University of Prince Edward Island

Comonotone approximation and interpolation by entire functions

A theorem of Hoischen states that given a positive continuous function $\varepsilon : \mathbb{R} \to \mathbb{R}$, an integer $n \ge 0$, and a closed discrete set $E \subseteq \mathbb{R}$, any C^n function $f : \mathbb{R} \to \mathbb{R}$ can be approximated by an entire function g so that for $k = 0, \ldots, n$, and $x \in \mathbb{R}$, $|D^k g(x) - D^k f(x)| < \varepsilon(x)$, and if $x \in E$ then $D^k g(x) = D^k f(x)$. The approximating function g is entire and hence piecewise monotone. We determine conditions under which when f is piecewise monotone we can choose g to be comonotone with f (increasing and decreasing on the same intervals), and for the derivatives $D^k g$ to be comonotone with $D^k f$ when the latter are piecewise monotone.