EDWARD TIMKO, University of Manitoba

A Classification of *n*-tuples of Commuting Isometries

Let \mathbb{V} denote an *n*-tuple of shifts of finite multiplicity, and denote by Ann (\mathbb{V}) the ideal consisting of polynomials p in n complex variables such that $p(\mathbb{V}) = 0$. If \mathbb{W} on \mathfrak{K} is another *n*-tuple of shifts of finite multiplicity, and there is a \mathbb{W} -invariant subspace \mathfrak{K}' of finite codimension in \mathfrak{K} so that $\mathbb{W}|\mathfrak{K}'$ is similar to \mathbb{V} , then we write $\mathbb{V} \leq \mathbb{W}$. If $\mathbb{W} \leq \mathbb{V}$ as well, then we write $\mathbb{W} \approx \mathbb{V}$.

In the case that $\operatorname{Ann}(\mathbb{V})$ is a prime ideal we show that the equivalence class of \mathbb{V} is determined by $\operatorname{Ann}(\mathbb{V})$ and a positive integer k. More generally, the equivalence class of \mathbb{V} is determined by $\operatorname{Ann}(\mathbb{V})$ and an *m*-tuple of positive integers, where *m* is the number of irreducible components of the zero set of $\operatorname{Ann}(\mathbb{V})$.