NICOLE LOOPER, Northwestern University

A lower bound on the canonical height for polynomials
Let K be a number field. The canonical height function \hat{h}_{ϕ} associated to a rational function $\phi: \mathbb{P}^{1}(K) \rightarrow \mathbb{P}^{1}(K)$ measures arithmetic information about the forward orbits of points under ϕ. Silverman conjectured that for a given number field K and $d \geq 2$, there exist constants $\kappa_{1}>0$ and κ_{2} such that for all degree d rational maps $\phi \in K(z)$ and all $\alpha \in K$, either α is preperiodic under ϕ, or $\hat{h}_{\phi}(\alpha) \geq \kappa_{1} h_{\mathcal{M}_{d}}(\phi)+\kappa_{2}$, where $h_{\mathcal{M}_{d}}$ is a height on the moduli space \mathcal{M}_{d} of degree d rational functions. We will discuss a proof of such a uniform lower bound across large classes of polynomials.

