LUKE ROGERS, University of Connecticut

Spectral properties of pseudodifferential operators on the Sierpinski Gasket

The celebrated Szegö limit theorem states that

$$\lim_{n \to \infty} \frac{1}{n+1} \log \det P_n[f] P_n = \int_0^{2\pi} \log f(\theta) \frac{d\theta}{2\pi}$$

where [f] is the operator of multiplication by a positive $C^{1+\alpha}$ function f and P_n is the projection onto the span of $\{e^{ik\theta}, 0 \le k \le n\}$ in L^2 of the unit circle. Later generalizations allow more complicated operators than [f].

In joint work with M. lonescu and K. Okoudjou we consider an analogue of this result on the Sierpinski Gasket in which [f] is replaced by a pseudo-differential operator, the projection is onto the eigenspaces of L^2 with eigenvalues less than Λ and the limit is taken as $\Lambda \to \infty$. For a suitable class of pseudo-differential operators the result gives asymptotics of the operator from its symbol.