SASHA MANGEREL, University of Toronto

On the Bivariate Erdős-Kac Theorem and Correlations of the Mobius Function
Let ω denote the arithmetic function that counts the number of distinct prime factors of an integer, and let $d \geq 1$. We develop a bivariate probabilistic model to study the joint distribution of the deterministic vectors $(\omega(n), \omega(n+d))$ with $n \leq x$ as $x \rightarrow \infty$, where n and $n+d$ are both required to be squarefree. The following three results are applications:
i) We establish a quantitative version of the bivariate Erdős-Kac theorem, a result first proven in a non-quantitative way by W. LeVeque, on a proper subset of \mathbb{N}.
ii) We give two partial results in the direction of a conjecture of Chowla on binary correlations of the Möbius function. Let $\mu_{z}(n):=\mu^{2}(n)(-1)^{\omega(n ; z)}$, where $\omega(n ; z)$ is the number of distinct primes $p \mid n$ with $p \leq z$. Then as long as $\frac{\log x}{\log z} \rightarrow \infty$ as $x \rightarrow \infty, \sum_{n \leq x} \mu_{z}(n) \mu_{z}(n+1)=o(x)$.
In a related way, we show that if $\mu(n ; u):=\mu^{2}(n) e^{i u \omega(n)}$ then provided that $u=o(1)$ and $u \sqrt{\log _{2} x} \rightarrow \infty$ as $x \rightarrow \infty$ then $\sum_{n \leq x} \mu(n ; u) \mu(n+1 ; u)=o(x)$.
iii) We finally prove a partial result in the direction of a conjecture of Erdős, Pomerance and Sarkőzy on the order of magnitude of the number of $n \leq x$ such that $\tau(n)=\tau(n+1)$.

