STEVE GONEK, University of Rochester

The distribution of positive and negative values of Hardy's Z-function

We investigate the distribution of positive and negative values of Hardy's function

$$Z(t) = \zeta(\frac{1}{2} + it)\chi(\frac{1}{2} + it)^{-1/2},$$

where $\chi(s)$ is the factor from the functional equation for the zeta function,

$$\zeta(s) = \chi(s)\zeta(1-s).$$

We show that as $T \to \infty$,

$$\mu(I_+(T,T)) \ \gg T \qquad \text{and} \qquad \mu(I_-(T,T)) \ \gg \ T,$$

where $\mu(\cdot)$ denotes Lebesgue measure and

$$I_{+}(T,H) = \{T < t \le T + H : Z(t) > 0\},\$$

$$I_{-}(T,H) = \{T < t \le T + H : Z(t) < 0\}.$$

We also show that if the Riemann hypothesis and pair correlation conjecture are true, then

$$\mu(I_+(0,T)) \ge .32909 T$$
 and $\mu(I_-(0,T)) \ge .32909 T$.

This is joint work with A. lvic.