DAVID NUALART, The University of Kansas

Parabolic Anderson model driven by colored noise

The aim of this talk is to present some recent result on the stochastic heat equation on \mathbb{R}^d

$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + \sqrt{\lambda} u \dot{W},$$

with initial condition u_0 , where $\lambda > 0$ and the noise $\dot{W}(t, x)$ is white in time and it has an homogeneous spacial covariance. In the one-dimensional case, we allow the covariance of the noise to be rougher than the classical space-time white noise, including the case of a fractional noise with Hurst parameter $H \in (1/4, 1/2)$. On the other hand, the initial condition can be a measure that integrates the function $e^{-a|x|^2}$ for all a > 0. We show the existence of a unique mild solution using its Wiener chaos expansion and we derive Feynman-Kac formulas for the moments. We compute the Liapounov exponents and discuss intermittency properties of the solution.