TYLER HOLDEN, University of Toronto

Non-abelian convexity of based loop groups

If K is a compact, connected, simply connected Lie group, its based loop group ΩK is endowed with a Hamiltonian $S^1 \times T$ action, where T is a maximal torus of K. Atiyah and Pressley examined the image of ΩK under the moment map μ , while Jeffrey and Mare examined the corresponding image of the real locus ΩK^{τ} for a compatible anti-symplectic involution τ . Both papers generalize well known results in finite dimensions, specifically the Atiyah-Guillemin-Sternberg theorem, and Duistermaat's convexity theorem. In the spirit of Kirwan's convexity theorem, I have generalized the two aforementioned results by demonstrating convexity of ΩK and its real locus ΩK^{τ} in the full non-abelian regime, resulting from the Hamiltonian $S^1 \times K$ action. In particular, this is done by appealing to the Bruhat decomposition of the algebraic (affine) Grassmannian, and appealing to the "highest weight polytope" results for Borel-invariant varieties of Guillemin and Sjamaar and Goldberg.