CHANTAL DAVID, Concordia University

One-level density in one-parameter families of elliptic curves with non-zero average root number

(joint work with Sandro Bettin and Christophe Delaunay)

We present in this talk a (conjectural) formula for the one-level density of general one-parameter families of elliptic curves, in term of \(n \), the rank of \(E \) over \(Q(t) \) and the average root number \(W_E \) over the family. In the general case, \(W_E \) is zero, and the one-level density is given by orthogonal symmetries as predicted by the conjectures of Katz and Sarnak. In the exceptional cases where \(W_E \neq 0 \), we find that the statistics are given by a weighted sum of even orthogonal and odd orthogonal symmetries. The most dramatic and counter-intuitive cases occur when \(W_E = \pm 1 \). In that case, the one-level density exhibits even orthogonal symmetries when \((-1)^n W_E = 1 \) and odd orthogonal symmetries when \((-1)^n W_E = -1 \), and there is a shift of the symmetries (between orthogonal odd and orthogonal even) when \(n \) is odd.