

AN INVERSE PROBLEM FOR A FRACTIONAL DIFFUSION

OLANIYI SAMUEL İYIOLA

ABSTRACT

bi-orthogonal basis of L^2 -space is selected for this purpose. The In this paper, we present a method for determining the solution an example is given to illustrate the applicability of the method. results are presented in the form of Mittag-Leffler function and fusion equation. Due to a nonself-adjoint boundary condition, a and the source term of a Riemann-Liouville time-fractional dif-

INTRODUCTION

some conditions on the boundary. to determine the solution u(x,t). For this purpose, we require source term, f(x), is unknown and at the same time we want A special case of an inverse problem is considered for a Reimann Liouville time-fractional diffusion equation. Here, the

PROBLEM STATEMENT

We consider the problem of determining the temperature distribution, u(x, t) and the source term, f(x) for the following system

$$\begin{split} D^{\alpha}u(x,t) - u_{xx}(x,t) &= f(x), \ 0 < x < 1, \ 0 < t < T, \ 0 < \alpha \le 1, \\ I^{1-\alpha}u(x,t)|_{t=0} &= g(x), \ u(x,T) = h(x), \ 0 < x < 1, \\ u(1,t) &= 0, \ u_x(0,t) = u_x(1,t), \ 0 < t \le T. \end{split}$$

where $g, h \in L^2(0,1)$, the initial and final conditions respectively. The operators D^α is defined by

$$\begin{split} D^{\alpha}w(t) &=& DI^{1-\alpha}w(t), \qquad D = \frac{d}{dt}, \\ I^{\alpha}w(t) &=& \frac{1}{\Gamma(\alpha)}\int_{0}^{t}(t-\tau)^{\alpha-1}w(\tau)\,d\tau, \, t>0, \, \alpha>0, \end{split}$$

where Γ is the Gamma function

METHOD AND CONSTRUCTION

Using bi-orthogonal pair of dual Riesz bases for the space Where using the biorthogonal basis given, we have $L^2(0,1)$:

$$\Phi = \{\varphi_0, \varphi_{1n}, \varphi_{2n}\}_{n=1}^{\infty}, \quad \Psi = \{\psi_0, \psi_{1n}, \psi_{2n}\}_{n=1}^{\infty},$$
 where,

$$\varphi_0(x) = 2(1-x), \ \varphi_{1n}(x) = 4(1-x)\cos\lambda_n x, \ \varphi_{2n}(x) = 4\sin\lambda_n x.$$

$$\psi_0(x) = 1, \ \psi_{1n}(x) = \cos \lambda_n x, \ \psi_{2n}(x) = x \sin \lambda_n x,$$

We seek a solution and source function to our problem in the

$$u(x,t) = u_0(t) \varphi_0(x) + \sum_{\substack{n=1,2\\k=1,2}}^{\infty} u_{kn}(t) \varphi_{kn}(x),$$

$$f(x) = f_0 \varphi_0(x) + \sum_{\substack{n=1,2\\k=1,2}}^{\infty} f_{kn} \varphi_{kn}(x).$$

We can also write both initial and final data as

$$g(x) = g_0 \varphi_0(x) + \sum_{\substack{n=1\\k=1,2}}^{\infty} g_{kn} \varphi_{kn}(x),$$

and

$$= h_0 \varphi_0(x) + \sum_{\substack{n=1\\k=1,2}}^{\infty} h_{kn} \varphi_{kn}(x).$$

$$g_0 = \langle g, \psi_0 \rangle, \ g_{kn} = \langle g, \psi_{kn} \rangle, \quad , k = 1, 2, n = 1, 2, \cdots$$

$$h_0 = \langle h, \psi_0 \rangle, \ h_{kn} = \langle h, \psi_{kn} \rangle, \qquad k = 1, 2, n = 1, 2, \cdots.$$

We denote the inner product in $L^2(0,1)$ by

$$\langle g, h \rangle = \int_0^1 g(x) h(x) dx.$$

differential equations Using these representation, we obtain the system of integro-

$$D^{\alpha}u_{0}(t) = f_{0},$$

$$D^{\alpha}u_{1n}(t) + \lambda_{n}^{2}u_{1n}(t) = f_{1n}, \quad n = 1, 2, \dots,$$

$$D^{\alpha}u_{2n}(t) + \lambda_{n}^{2}u_{2n}(t) - 2\lambda_{n}u_{1n}(t) = f_{2n}, \quad n = 1, 2, \dots$$

Initial conditions and final conditions are: to determine f_0 , f_{1n} , f_{2n} , u_0 , u_{1n} and u_{2n} .

$$I^{1-\alpha}u_0(0) = g_0, \ I^{1-\alpha}u_{kn}(0) = g_{kn}, \qquad k = 1, 2. n = 1, 2, \cdots,$$

 $u_0(T) = h_0, \quad u_{kn}(T) = h_{kn},$

 $k = 1, 2, n = 1, 2, \cdots$

RESULTS

We obtain the following results:

(1) The coefficients f_0 and f_{kn} , k = 1, 2, in the form

$$\begin{array}{lcl} f_0 & = & \frac{\Gamma(1+\alpha)}{T^{\alpha}} \left[h_0 - \frac{g_0}{\Gamma(\alpha)} T^{\alpha-1} \right] \\ f_{1n} & = & \frac{\left[h_{1n} - g_{1n} T^{\alpha-1} E_{\alpha,\alpha} (-\lambda_n^2 T^{\alpha}) \right]}{T^{\alpha} E_{\alpha,\alpha+1} (-\lambda_n^2 T^{\alpha})}, \\ f_{2n} & = & \frac{\left[h_{2n} - g_{2n} T^{\alpha-1} E_{\alpha,\alpha} (-\lambda_n^2 T^{\alpha}) + S_n(T) \right]}{T^{\alpha} E_{\alpha,\alpha+1} (-\lambda_n^2 T^{\alpha})}, \end{array}$$

(2) The coefficients u_0 and u_{kn} , k = 1, 2, in the form

$$\begin{array}{lll} u_0(t) & = & \frac{f_0}{\Gamma(1+\alpha)} t^{\alpha} + \frac{g_0}{\Gamma(\alpha)} t^{\alpha-1} \\ u_{1n}(t) & = & f_{1n} t^{\alpha} E_{\alpha,\alpha+1}(-\lambda_n^2 t) + g_{1n} t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_n^2 t^{\alpha}), \\ u_{2n}(t) & = & f_{2n} t^{\alpha} E_{\alpha,\alpha+1}(-\lambda_n^2 t^{\alpha}) + g_{2n} t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_n^2 t^{\alpha}) + S_n(t) \end{array}$$

where

$$S_n(t) = 2\lambda_n \left[f_{1n} t^{2\alpha} E_{\alpha,2\alpha+1}^2 (-\lambda_n^2 t^{\alpha}) + g_{1n} t^{2\alpha-1} E_{\alpha,2\alpha}^2 (-\lambda_n^2 t^{\alpha}) \right].$$

EXAMPLE AND NUMERICAL RESULTS

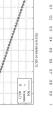
Consider the problem with

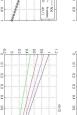
$$g(x) = 0$$
 and $h(x) = T^{\alpha}(1 - x)$.

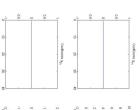
Accordingly, using our results, we get

$$f(x) = \Gamma(1+\alpha)(1-x)$$

) and
$$u(x,t) = t^{\alpha}(1-x)$$
.







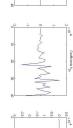


Figure 2: Convergence results for the coefficients

REFERENCES

Figure 1: Solution plots with $0 < t \le 1$, $0 \le x \le 1$ and $\alpha = 0.5$

Computation, 249, 24-31, 2014. 1) K.M. Furati, O.S. Iyiola and M. Kirane, An inverse problem for a generalized fractional diffusion, Applied Mathematics and

equation involving fractional derivative in time, Applied Mathematics and Computation, 218 (1), 163-170, 2011. 2) M. Kirane and Salman A. Malik, Determination of an unknown source term and the temperature distribution for the linear heat

ACKNOWLEDGEMENT

and King Fahd University of Petroleum and Minerals is greatly The support provided by the Canadian Mathematical Society

CONTACT INFORMATION

Email: samuel@kfupm.edu.sa and niyi4oau@gmail.com

Phone No.: +966-53-7611-409 and +966540475572

PRESENTATION

The Canadian Mathematical Society (CMS) Winter Meeting at Hamilton, Ontario, Canada, December 5-8, 2014.