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Introduction

The spread of highly pathogenic avian influenza
(HPAI) A viruses has not only triggered a major
loss of birds and humans life, but it has also cost a
significant amount of money to treat the infecteds
and invest in prevention to control the disease.

Immediate actions have to be taken whenever the
number of infected has gone beyond a certain tol-
erant threshold to avoid a deadly outbreak.

Hence, a well-defined threshold policy is crucial to
combat the outbreak efficiently.

Filippov Models
(i) The avian-only model with culling of infected

domestic birds

S ′d(t) = Λd − βdSdId − µdSd
I ′d(t) = βdSdId − (µd + dd)Id − udcId

(1)

with ud =

{
0 for Id < IT
1 for Id > IT ,

where Sd, Id and IT > 0 are the susceptible do-
mestic birds, infected domestic birds and the
tolerance threshold level, respectively. The de-
scriptions of the associated parameters and its
sample values that are used in the numerical
simulations are as shown in the following table.

Parameter Description Sample Value

Λd Bird inflow
2060

365

µd Natural death of birds
1

2× 365
βd Rate at which birds contract

avian influenza
0.4

dd Disease death rate due to
avian influenza in birds

0.1

c Culling rate of infected birds 1.5

(ii) The SIIR model with quarantine

S ′(t) = Λ− βa(1− qu)SIa − βm(1− qu)SIm − µS
I ′a(t) = βa(1− qu)SIa − (µ + d + γ + ε)Ia
I ′m(t) = βm(1− qu)SIm + εIa − (µ + d + γ)Im
R′(t) = γ(Ia + Im)− µR

(2)

with u =

{
0 for Ia + Im < Ic
1 for Ia + Im > Ic,

where the tolerance threshold is Ic > 0. S, Ia, Im
and R are the susceptible humans, humans in-
fected with avian strain, humans infected with
mutant strain and humans who have recovered
from either strain, respectively.

Parameter Description Sample Value

Λ Human recruitment rate
1000

365

µ Natural mortality rate of humans
1

65× 365
βa Human-to-human transmission

rate for the avian strain
0.4

βm Human-to-human transmission
rate for the mutant strain

0.3 ×βa

d Additional disease death rate of
humans due to avian influenza

0.15

γ Recovery rate of humans 0.2669
ε Mutation rate 0.01
q Quarantine rate 0.6

Types of equilibrium points
Suppose a differential equation, ẋ = f (x, t), is discontinu-
ous on surface M that is defined by equation σ(x) = 0 where
x ∈ Rn.
M separates x ∈ Rn into domains G− and G+, and its dy-
namics are governed by f−(x, t) and f+(x, t), respectively.
Further, the sliding mode equation f 0(x, t) describes the mo-
tion in the sliding region Ω ⊂M .
Suppose there exists an equilibrium point in each region
G−, G+ and Ω, denoted by E1, E2 and Es, respectively.
There are four types of equilibria that might exist in a Filip-
pov model: real, virtual, pseudoequilibrium and boundary
equilibria. The definition of each type of equilibrium is given
as follows:
Definition:

(a) ER is a real equilibrium if f−(ER) = 0 and σ(ER) < 0 or
f+(ER) = 0 and σ(ER) > 0.

(b) EV is a virtual equilibrium if f−(EV ) = 0 and σ(EV ) > 0

or f+(EV ) = 0 and σ(EV ) < 0.

(c) EB is a boundary equilibrium if f−(EB) = 0 and σ(EB) =

0 or f+(EB) = 0 and σ(EB) = 0.

(d) EP is a pseudoequilibrium if EP is an equilibrium point
on the sliding mode; i.e., f 0(EP ) = 0 and σ(EP ) = 0.

Results
(i) The avian-only model with culling of infected

domestic birds
Let

G1d :=
{

(Sd, Id) ∈ R2
+; Id < IT

}
,

G2d :=
{

(Sd, Id) ∈ R2
+; Id > IT

}
,

Md :=
{

(Sd, Id) ∈ R2
+; Id = IT

}
and

Ωd := {(Sd, Id) ∈Md;h1d < Sd < h2d} .

In regions G1d and G2d, we have endemic equi-
libria E11d = (h1d, h4d) and E21d = (h2d, h3d), re-
spectively. Further, Ed is a pseudoequilibrium
if it exists on the sliding domain Ωd.
• Case 1: E11d and E21d are virtual equilibria if
h3d < IT < h4d.

0 1 2 3 5 6
0

10

30

40

50

60

70

S
d

I d

M
d

Ω
d

E
d

E
21d

V

G
1d

G
2d

S
d
=h

1d

I
T

h
1d

h
2d

h
3d

h
4d

E
11d

V

S
d
=h

2d

I
d
=h

4d

I
d
=h

3d

(a)

(a)

(a)

(b)

(b)

Figure 1: Ed ∈ Ωd ⊂ Md is globally asymptotically stable if
h3d < IT < h4d.

• Case 2: E11d is a real equilibrium, whereas
E21d is a virtual equilibrium if IT > h4d.
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Figure 2: ER
11d ∈ G1d is globally asymptotically stable if

IT > h4d.

• Case 3: E21d is a real equilibrium, whereas
E11d is a virtual equilibrium if IT < h3d.

0 1 2 3 5 6
0

1

3

4

5

6

S
d

I d

I
T

h
1d h

2d

M
d

Ω
d

G
1d

G
2d

E
21d

R

S
d
=h

2d
S

d
=h

1d

(a)

(a)

(b)
(b)

(c)

Figure 3: ER
21d ∈ G2d is globally asymptotically stable if

IT < h3d.

(ii) The SIIR model with quarantine
Let

G1 :=
{

(S, Ia, Im) ∈ R3
+; Ia + Im < Ic

}
,

G2 :=
{

(S, Ia, Im) ∈ R3
+; Ia + Im > Ic

}
,

M :=
{

(S, Ia, Im) ∈ R3
+; Ia + Im = Ic

}
and

Ω := {(S, Ia, Im) ∈M ;h1(Ia) < S < h2(Ia)} .

Endemic equilibria E11 = (E11S,E11Ia, E11Im)
and E21 = (E21S,E21Ia, E21Im) are located in re-
gions G1 and G2, respectively. Moreover, Es =
(EsS,EsIa, EsIm) is a pseudoequilibrium if it ex-
ists on the sliding domain Ω.

• Case 4: E11 and E21 are virtual equilibria if
E11Ia + E11Im > Ic and E21Ia + E21Im < Ic are
satisfied.
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Figure 4: A trajectory with initial point in G1 will hit and
slide to the left on Ω ⊂M before moving towards Es. In this
case, Es ∈ Ω ⊂ M is locally asymptotically stable if the re-
quirements of E11Ia + E11Im > Ic and E21Ia + E21Im < Ic are
met.

• Case 5: E11 is a real equilibrium, whereas E21

is a virtual equilibrium if E11Ia + E11Im < Ic
and E21Ia + E21Im < Ic are fulfilled
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Figure 5: A trajectory will pass through M moving towards
G2 from G1 and hit the manifold M again from the direction
of G2. Then it will slide down on Ω ⊂ M before converging
to ER

11 in G1. For Case 5, ER
11 ∈ G1 achieves local asymptotic

stability if E11Ia + E11Im < Ic and E21Ia + E21Im < Ic are
fulfilled.

• Case 6: E21 is a real equilibrium, whereas E11

is a virtual equilibrium if E11Ia + E11Im > Ic
and E21Ia + E21Im > Ic are satisfied
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Figure 6: A trajectory hits Ω ⊂ M from G1 and then moves
up on Ω before converging to ER

21 in G2. So in this case, we
have ER

21 ∈ G2 is locally asymptotically stable if the condi-
tions ofE11Ia+E11Im > Ic andE21Ia+E21Im > Ic are fulfilled.

Conclusion
•Whenever the trajectory of the avian-only Filippov model

is found to be converging to E11d ∈ G1d or Ed ∈ Ωd ⊂ Md,
we consider that the infection of avian influenza in the
avian population is still bearable.

• However, if the solution of this model converges toE21d ∈
G2d, we assume that an outbreak is emerging. As a re-
sponse to the outbreak, control methods have to be im-
plemented in order to suppress the transmission and con-
tain the disease.

• An SIIR model with quarantine is designed to assess an
appropriate quarantine threshold level that will lead to
disease elimination.

• The solutions of this model will converge to either one of
the two endemic equilibria or the sliding equilibrium.

• In order to inhibit an outbreak or to stabilize the infection,
we have to choose a suitable tolerance threshold Ic such
that the trajectory of the model is approaching E11 ∈ G1

or the sliding equilibrium Es ∈ Ω ⊂M .

• Our findings show that we can either preclude the in-
fluenza outbreak or stabilize the infection at a desired
level by choosing an appropriate threshold level.

• A well-defined threshold policy is essential in order to
combat an outbreak effectively and efficiently.
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