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Motivation
There has been much recent interest in nonlinear
dispersive equations that model breaking waves.
One of the �rst well-studied equations of this
kind is the Camassa-Holm (CH) equation [3],
written in the form of a system as

m = u− uxx,
mt = 2uxm+ umx = ( 1

2 (u2 − u2x) + um)x
(1)

for m(t, x), u(t, x), where u = ∆−1m is ex-
pressed in terms of the operator ∆ = 1 − D2

x.
This equation arises from the theory of shallow
water waves [2, 3] and provides a model of wave
breaking for a large class of solutions in which
the wave slope blows up in a �nite time while
the wave amplitude remains bounded. There
is a special class of weak solutions that de-
scribes peaked solitary waves, known as peakons
[1, 3, 4].
More remarkably, the CH equation is an inte-
grable system [3], possessing a Lax pair, a bi-
Hamiltonian structure, and an in�nite hierarchy
of symmetries and conservation laws.
We consider a nonlinearly generalized Camassa-
Holm equation, depending an arbitrary nonlin-
earity power p 6= 0. This equation reduces to
the Camassa-Holm equation when p = 1 and
shares one of the Hamiltonian structures of the
Camassa-Holm equation. Two main results are
obtained.

Derivation
We consider one of the Hamiltonian structures of the CH equation (1)

mt = −E(δE/δm) (2)

given by the Hamiltonian operator E = Dx −D3
x, where the Hamiltonian is

E =
∫ +∞
−∞

1
2u(u2 + u2x) dx. (3)

The Hamiltonian structure (2) can be equivalently expressed in a strictly local variational form in
terms of u through the identity

E(δF/δm) = Dx(δF/δu) (4)

(which holds for any Hamiltonian F ). This formulation gives

mt = −Dx(δE/δu) (5)

where E is the Hamiltonian (3).
A natural nonlinear generalization of the variational formulation (5) consists of simply replacing the
Hamiltonian (3) by

E(p) =
∫ +∞
−∞

1
2u

p(u2 + u2x) dx, p 6= 0, (6)

which yields the Hamiltonian evolutionary equation

mt = −Dx(δE(p)/δu) = −E(δE(p)/δm), (7)

where p is an arbitrary nonlinearity power. The generalized CH (gCH) equation (7), written in the
form of a system as

m = u− uxx,
mt = 2pup−1uxm+ upmx + 1

2p(p− 1)up−2(u2 − u2x)ux
(8)

for u(t, x), m(t, x) reduces to the CH equation (1) when p = 1. For p 6= 1, the gCH equation (7) is
a nonlinear variant of the CH equation (1).

Conservation Laws
Like the CH equation, the gCH equation has a
equivalent formulation in the form of a conser-
vation law

mt = ( 1
2pu

p−1(u2 − u2x) + upm)x. (9)

Thus the integral

P =
∫ +∞
−∞m dx (10)

is conserved, dP

dt
= 0 (11)

(under suitable asymptotic decay conditions on
u). Another conserved integral is provided by
the Hamiltonian (6)

dE(p)

dt
= 0. (12)

Symmetries

Proposition 1 The in�nitesimal point symme-
tries admitted by the gCH system (8) for p 6= 0
are generated by

X1 = ∂x, translation in x, (13)

X2 = ∂t, translation in t, (14)

X3 = m∂m + u∂u − pt∂t, scaling. (15)

All of these symmetries (13)�(15) project to
point symmetries of the gCH equation (9).

These symmetries are used to reduce the
gCH equation to ordinary di�erential equa-
tions (ODEs) that describe the corresponding
group invariant solutions. Reduction under the
combined space-time translations (13) and (14)
yields a travelling wave ODE.

Peakon solutions

By integrating a weak form of the travelling wave ODE, peakon solutions are obtained.

Proposition 2 The gCH equation (9) admits peaked travelling waves (which are weak solutions)

u = c1/p exp(−|x+ ct|), p 6= 0, (16)

where c is an arbitrary positive constant.

Remarks
We have introduced a nonlinearly generalized
CH equation (8), depending on an arbitrary
nonlinearity power p 6= 0. This equation reduces
to the CH equation when p = 1 and shares one
of the Hamiltonian structures of CH equation
(1). For all p 6= 0, it admits a peakon solution
(16).
The gCH equation is worth further study to un-
derstand how its nonlinearity a�ects properties
of its solutions compared to the CH equation. In
particular, the CH equation is an integrable sys-
tem, admits multi-peakon weak solutions, and
exhibits wave-breaking for a large class of clas-
sical solutions.

• Is the gCH equation integrable for some
nonlinearity power p 6= 1?

• Does it admit multi-peakon solutions for
nonlinearity powers p 6= 1?

• Is it well-posed for all p 6= 1?
• Does it exhibit the same wave-breaking be-
havior for all p 6= 1?

• Is there a critical power p for which a dif-
ferent kind of blow-up occurs (other than
wave breaking)?
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