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Derivation

We consider one of the Hamiltonian structures of the CH equation (1)

Motivation

There has been much recent interest in nonlinear
dispersive equations that model breaking waves.
One of the first well-studied equations of this

kind is the Camassa-Holm (CH) equation |[3],
written in the form of a system as

my = —E(OE /dm) (2)

given by the Hamiltonian operator £ = D, — D2, where the Hamiltonian is

m=1u— Ugy, : L= f+001 +u)d (3)
Mt = 2UpM + UMy = (%(UQ — uy) + um), b The Hamiltonian structure (2) can be equivalently expressed in a strictly local variational form in
terms of v through the identity
for m(t,x), u(t,z), where u = A7 'm is ex- E(6F/6m) = D, (6F/éu) (4)
pressed in terms of the operator A = 1 — D2
This equation arises from the theory of shallow (which holds for any Hamiltonian F'). This formulation gives
water waves |2, 3| and provides a model of wave my = —Dy(8F/6u) (5)

breaking for a large class of solutions in which
the wave slope blows up in a finite time while
the wave amplitude remains bounded. There |
is a special class of weak solutions that de-
scribes peaked solitary waves, known as peakons
11, 3, 4].

More remarkably, the CH equation is an inte-
grable system |3|, possessing a Lax pair, a bi-
Hamiltonian structure, and an infinite hierarchy
of symmetries and conservation laws.

We consider a nonlinearly generalized Camassa-
Holm equation, depending an arbitrary nonlin-
earity power p # 0. This equation reduces to
the Camassa-Holm equation when p = 1 and
shares one of the Hamiltonian structures of the
Camassa-Holm equation. Two main results are
obtained.

i

Conservation L

Like the CH equation, the gCH equation has a
equivalent formulation in the form of a conser-
vation law

my = (gpu’ (U —ug) +uPm)e. (9)

where F is the Hamiltonian (3).
A natural nonlinear generalization of the variational formulation (5) consists of simply replacing the

Hamiltonian (3) by
Ep) = [T o5uP(u® +ul) de, p#0, (6)

which yields the Hamiltonian evolutionary equation
my = —Dg(0E ) /0u) = —E(0E () /om), (7)
where p is an arbitrary nonlinearity power. The generalized CH (gCH) equation (7), written in the

form of a system as

m = U — Ugy,

(8)

my = 2puP” uzm 4+ uPmy + 2p(p — DuP ™ (u® — ul)u,

for w(t,x), m(t, z) reduces to the CH equation (1) when p = 1. For p # 1, the gCH equation (7) is
a nonlinear variant of the CH equation (1).

Remarks

We have introduced a nonlinearly generalized
CH equation (8), depending on an arbitrary
nonlinearity power p # 0. This equation reduces
to the CH equation when p = 1 and shares one
of the Hamiltonian structures of CH equation
(1). For all p # 0, it admits a peakon solution
(16).

The gCH equation is worth further study to un-
derstand how its nonlinearity affects properties
of its solutions compared to the CH equation. In
particular, the CH equation is an integrable sys-
tem, admits multi-peakon weak solutions, and
exhibits wave-breaking for a large class of clas-
sical solutions.

Symmetries

Proposition 1 The infinitesimal point symme-
tries admitted by the gCH system (8) for p # 0
are generated by

X1 = 0., translation in x, (13)
X9 = 0, translation in t, (14)
= MmOy, + ud, — ptdy, scaling. (15)

Thus the integral
P = ftzm dx (10)

All of these symmetries (13)—(15) project to
point symmetries of the gCH equation (9).

1S conserved, IP
dt

(under suitable asymptotic decay conditions on
u). Another conserved integral is provided by

the Hamiltonian (6)

AL p)
dt

— 0 (11)

These symmetries are used to reduce the
oCH equation to ordinary differential equa-
tions (ODEs) that describe the corresponding
group invariant solutions. Reduction under the
combined space-time translations (13) and (14)
yields a travelling wave ODE.

e [s the gCH equation integrable for some
nonlinearity power p # 17

e Does it admit multi-peakon solutions for
nonlinearity powers p # 17

e Is it well-posed for all p # 17

e Does it exhibit the same wave-breaking be-
havior for all p # 17

e Is there a critical power p for which a dif-
ferent kind of blow-up occurs (other than

wave breaking)?

— 0. (12)

Peakon solutions

By integrating a weak form of the travelling wave ODE, peakon solutions are obtained.

Proposition 2 The gCH equation (9) admits peaked travelling waves (which are weak solutions)
u=c'Pexp(—|z+ct]), p#0, (16)

where ¢ 1s an arbitrary positive constant.

Peakon solution (16) of gCH equation for p=3 Peakon solution (16) of gCH equation for c=4

{1::.:5=EJ 2. c=2. c=6) (p=0.8. p=2 and p==8&)
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