PETER CHO, University of Toronto
Logarithmic Derivatives of Artin L-functions
Let K be a number field of degree n, and d_{K} be its discriminant. Then under the Artin conjecture, GRH and certain zero density hypothesis, we show that the upper and lower bound of the logarithmic derivative of Artin L-functions attached to K at $s=1$ are $\log \log \left|d_{K}\right|$ and $-(n-1) \log \log \left|d_{K}\right|$, resp. Unconditionally we show that there are infinitely many number fields with the extreme logarithmic derivative values. They are families of number fields whose Galois closures have the Galois group as $C_{n}, 2 \leq n \leq 6, D_{n}, n=3,4,5, S_{4}$, and A_{5}. This is a joint work with Henry H. Kim.

