NATALIYA LAPTYEVA, University of Toronto

A Variant of Lehmers Conjecture in the CM Case

Lehmer's conjecture asserts that $\tau(p) \neq 0$, where τ is the Ramanujan τ -function. This is equivalent to the assertion that $\tau(n) \neq 0$ for any n. A related problem is to find the distribution of primes p for which $\tau(p) \equiv 0 \pmod{p}$. These are open problems. However, the variant of estimating the number of integers n for which n and $\tau(n)$ do not have a non-trivial common factor is more amenable to study. More generally, let f be a normalized eigenform for the Hecke operators of weight $k \geq 2$ and having rational integer Fourier coefficients $\{a(n)\}$. It is interesting to study the quantity (n, a(n)). It was proved by S. Gun and V. K. Murty (2009) that for Hecke eigenforms f of weight 2 with CM and integer coefficients a(n)

$$\{n \le x \mid (n, a(n)) = 1\} = \frac{(1 + o(1))U_f x}{\sqrt{\log x \log \log \log x}}$$

for some constant $U_f.$ We extend this result to higher weight forms. We also show that

$$\{n \le x \mid (n, a(n)) \text{ is a prime}\} \ll \frac{x \log \log \log \log x}{\sqrt{\log x \log \log \log x}}$$