KEVIN HENRIOT, Université de Montréal et Université Paris 7
Arithmetic progressions in sumsets
We are concerned with quantitative statements about the additive structure of the set $k A$ of sums of k elements of a subset A of $\{1, \ldots, N\}$. For $k=2$, a result of Bourgain (1999) in this direction states that, provided A has density α at least $(\log N)^{-1 / 3+\varepsilon}$, the sumset $2 A$ always contains a long arithmetic progression, of length $e^{c(\log N)^{c}}$. A recent result of Croot, Laba and Sisask (2011) shows that this result holds in the longer range $\alpha \geq(\log N)^{-1+\varepsilon}$. In this talk we discuss the analogue problem for $k=3$, in which case we expect the sumset $3 A$ to possess more structure. Specifically, we show how methods developed by Sanders (2011) in the context of Roth's theorem may be applied to obtain an arithmetic progression of similar length in $3 A$, in the longer range $\alpha \geq(\log N)^{-2+\varepsilon}$.

