CARMEN BRUNI, UBC

Twisted extensions of Fermat's Last Theorem
Let $x, y, z, p, n, \alpha \in \mathbb{Z}$ with $\alpha \geq 1, p$ and $n \geq 5$ primes. In 2011, Michael Bennett, Florian Luca and Jamie Mulholland showed that the equation $x^{3}+y^{3}=p^{\alpha} z^{n}$ has no pairwise coprime nonzero integer solutions provided $p \geq 5, n \geq p^{2 p}$ and $p \notin S$ where S is the set of primes q for which there exists an elliptic curve of conductor $N_{E} \in\{18 q, 36 q, 72 q\}$ with at least one nontrivial rational 2-torsion point. I will present a solution that extends the result to include a subset of the primes in S; those $q \in S$ for which all curves with conductor $N_{E} \in\{18 q, 36 q, 72 q\}$ with nontrivial rational 2-torsion have discriminants not of the form l^{2} or $-3 m^{2}$ with $l, m \in \mathbb{Z}$.

