BRANDON HANSON, University of Toronto

A Ramsey Theory Problem in Finite Fields

An open problem in arithmetic Ramsey theory asks if given a finite colouring $c: \mathbb{N} \rightarrow\{1, \ldots, r\}$ of the naturals, there exist $x, y \in \mathbb{N}$ such that $c(x y)=c(x+y)$. More generally, one could replace $x+y$ with a binary linear form and $x y$ with a binary quadratic form. In this talk we discuss the analogous problem in a finite field \mathbb{F}_{q}. Specifically, given a linear form L and a quadratic from Q in two variables, we provide estimates on the necessary size of $A \subset \mathbb{F}_{q}$ to guarantee that $L(x, y)$ and $Q(x, y)$ are elements of A for some $x, y \in \mathbb{F}_{q}$.

