CRISTINA STOICA, Wilfrid Laurier University
Relative equilibria in symmetric $(2 N+1)$-body problems
Consider the Newtonian $(2 N+1)$-body problem where $2 N$ of the bodies have unit mass and at any time form two regular $N$-gons with a common centre, and where an additional mass $m$ is centrally situated. It is known that in this context there is a $m_{0}>0$ so that the number of central configurations is three for $m<m_{0}$ and one if $m>m_{0}$. Also, it is known that there is a $m_{c}>0, m_{c} \neq m_{0}$, so that the regular 2 N -gon with central mass is linearly stable if $m>m_{c}$.
Using the discrete and rotational symmetries, we reduce the problem to a three degrees of freedom Hamiltonian system. In this setting, we show that the central configurations mentioned above are in fact relative equilibria and that $m_{0}$ marks a pitchfork/steady-state bifurcation. The value $m_{c}$ marks a Hamiltonian-Hopf bifurcation (i.e., a $1:-1$ resonance).

