PUIMAN NG, Université de Sherbrooke

Torsion theories in the cluster category of Dynkin type A_{∞}

Let \mathcal{D} be the cluster category of Dynkin type A_{∞} with translation functor Σ . Let \mathcal{U} be a cluster tilting subcategory of \mathcal{D} . Then by definition ($\mathcal{U}, \Sigma \mathcal{U}$) is a torsion theory. Now given any subcategory \mathcal{X} of \mathcal{D} , we provide the equivalent conditions for the pair (\mathcal{X}, \mathcal{Y}) to be a torsion theory for some subcategory \mathcal{Y} of \mathcal{D} .

Given any subcategory \mathcal{U} of \mathcal{D} , not all torsion theories $(\mathcal{U}, \mathcal{U}^{\perp})$ are t-structures. Therefore we press on to give a characterization of t-structures in \mathcal{D} on the Auslander-Reiten quiver. The simplicity of the way t-structures are visualized on the Auslander-Reiten quiver gives a subtle hint with regard to the description of the "t-structure triangles" in \mathcal{D} , which turns out to be faithful to our intuition by a rigorous proof with the involvement of the octahedral axiom.