Let \(q(x_0, x_1, x_2) \) be a homogeneous polynomial of degree 2 in 3 variables, with rational coefficients. Assume that \(q \) admits a non-trivial real zero and that \(q \) is irreducible over the field \(\mathbb{Q} \) of rational numbers. Denote by \(U \) the set of real zeros of \(q \) having \(\mathbb{Q} \)-linearly independent coordinates. We show that

a) each point in \(U \) has an exponent of uniform rational approximation between \(1/2 \) and \(1/\gamma \approx 0.618 \), where \(\gamma \) denotes the golden ratio,

b) the elements of \(U \) for which the upper bound is achieved form an infinite countable set.

For \(q(x_0, x_1, x_2) = x_0 x_2 - x_1^2 \), the statement a) is due to Davenport and Schmidt (1967) while b) is due to the author (2003). When \(q \) is irreducible over \(\mathbb{R} \) and admits a non-trivial rational zero, we are quickly reduced to that case. Otherwise, the proof of a) is simpler, but the existence of ”extremal” points in b) requires additional tools.