ALLEN KNUTSON, Cornell

Residual normal crossings of Schubert varieties

A divisor $D = \{f = 0\}$ in \mathbb{A}^n is called **residual normal crossings** if init $f = \prod_{i=1}^n x_i$, for some term order. From D we can build a stratification \mathcal{Y} of \mathbb{A}^n by varieties, by decomposing D into components, intersecting them, and repeating this process.

Theorem.

- 1. For each $Y \in \mathcal{Y}$, init Y is defined by *squarefree* monomials, i.e. is the Stanley-Reisner scheme of a simplicial complex.
- 2. init commutes with taking unions and intersections of strata $Y \in \mathcal{Y}$.
- 3. There is a natural surjection $2^n \to \mathcal{Y}$ of posets, that one can think of as giving a decomposition of the simplex Δ^{n-1} with strata indexed by \mathcal{Y} .
- 4. If Y's closed subcomplex of Δ^{n-1} is a shellable ball, then Y is Cohen-Macaulay. If Y's open subcomplex is the interior of that ball, then Y is normal.

Our principal example is when \mathbb{A}^n is an opposite Bruhat cell X^v_{\circ} in a (possibly infinite-dimensional) flag manifold, and \mathcal{Y} is induced from the Bruhat decomposition. Then the above theorem recovers the facts that Schubert varieties are normal and Cohen-Macaulay.

If time permits, I'll talk about varieties + stratifications that are covered by an atlas of opposite Bruhat cells, such as the Grassmannian with the Lusztig-Postnikov stratification [Snider], and (conjecturally) the wonderful compactification of a group [He-K-Lu, in preparation].