DAVID R. PITTS, University of Nebraska–Lincoln The *D*-Radical of an Inclusion

An *inclusion* is an ordered pair $(\mathcal{C}, \mathcal{D})$ consisting of a unital C^* -algebra \mathcal{C} and an abelian C^* -subalgebra \mathcal{D} with $I \in \mathcal{D} \subseteq \mathcal{C}$. Let $\mathcal{N}_{\mathcal{D}}(\mathcal{C}) := \{v \in \mathcal{C} : v\mathcal{D}v^* \cup v^*\mathcal{D}v \subseteq \mathcal{D}\}$ be the set of *normalizers* of \mathcal{D} . The inclusion $(\mathcal{C}, \mathcal{D})$ is *regular* if $\overline{\operatorname{span}}\mathcal{N}_{\mathcal{D}}(\mathcal{C}) = \mathcal{C}$. Call the regular inclusion $(\mathcal{C}, \mathcal{D})$ an extension inclusion if \mathcal{D} has the extension property in \mathcal{C} (i.e., every pure state of \mathcal{D} extends uniquely to a state on \mathcal{C}). A result of Archbold–Bunce–Gregson shows that whenever $(\mathcal{C}, \mathcal{D})$ is an extension inclusion, there exists a unique conditional expectation $E: \mathcal{C} \to \mathcal{D}$. A C^* -diagonal is an extension inclusion such that E is faithful. The notion of C^* -diagonal was introduced by Kumjian in a 1986 paper using an equivalent set of axioms; Kumjian showed that C^* -diagonals admit coordinates. Other authors (e.g., Muhly–Solel, Donsig–Pitts) utilized these coordinates in the study of subalgebras of C^* -diagonals.

In this talk, I will introduce a certain ideal of C, the D-radical of the inclusion (C, D), and will discuss the following two results:

- (a) a regular inclusion (C, D) regularly embeds into an extension inclusion if and only if the relative commutant of D in C is abelian, and
- (b) a regular inclusion $(\mathcal{C}, \mathcal{D})$ regularly embeds into a C^* -diagonal if and only if the \mathcal{D} -radical of $(\mathcal{C}, \mathcal{D})$ vanishes. If time permits, I will also discuss a certain groupoid which can be associated to a regular inclusion.