DOUGLAS FARENICK, University of Regina

Weakly continuous Hilbert bundles

If Δ is a Stonean space and if $(\Delta, \{H_s\}_{s \in \Delta}, \Omega)$ is a continuous Hilbert bundle over Δ , then there is an associated set Ω_{wk} of vector fields that satisfy continuity properties relative to the weak topology of the Hilbert space fibres H_s .

We prove that this set of vector fields carries the structure of a Kaplansky–Hilbert module over $C(\Delta)$ and that the algebra $B(\Omega_{\rm wk})$ of bounded (adjointable) endomorphisms of $\Omega_{\rm wk}$ is a type I AW*-algebra. Further, we show that $B(\Omega_{\rm wk})$ is the injective envelope and second-order local multiplier algebra of the C^* -algebra $K(\Omega)$ of compact endomorphisms of the Hilbert C^* -module Ω . In fact, $B(\Omega_{\rm wk}) = M_{\rm loc}(M_{\rm loc}(A)) = I(A)$ for the spatial continuous trace C^* -algebra A induced by the continuous Hilbert bundle $(\Delta, \{H_s\}_{s\in\Delta}, \Omega)$.

This is joint work with M. Argerami and P. Massey.