DAVID BARRETT, University of Michigan, Ann Arbor, Michigan 48109, USA Dual Hardy spaces on dual hypersurfaces in \mathbb{CP}^n

If γ is a simple closed smooth curve in the complex plane \mathbb{C} then it is not hard to show that the norm (on L^2) of the associated (inner or outer) Cauchy transform for γ is equal to the reciprocal of

$$\inf_{f \in H_+, ||f||=1} \sup_{g \in H_-, ||h||=1} \left| \int_{\gamma} fg \, dz \right|$$

where H_+ and H_- are the inner and outer Hardy spaces associated to γ (with p = 2); thus the norm of the Cauchy transform measures the efficiency of the pairing between H_+ and H_- . Projective geometry plays a role in this result in that everything in sight transforms well under linear fractional transformations.

This talk will show how the "dual complement" construction in higher-dimensional complex projective space \mathbb{CP}^n allows this result to be generalized to the case of (certain) higher-dimensional real hypersurfaces.