RAFAL KULIK, University of Ottawa, 585 King Edward, Ottawa, ON, K1N 6N5 Adaptive wavelet regression in random design for long memory processes

We investigate global performance of non-linear wavelet estimation in random-design regression models with long memory errors. Convergence properties are studied over a wide range of Besov classes and for a variety of L^p error measures. The setting is as follows. We observe $Y_i = f(X_i) + \sigma(X_i)\epsilon_i$, i = 1, ..., n, where $X_i, i \ge 1$, are (observed) independent identically distributed (i.i.d.) random variables with a distribution function G, $\epsilon_i, i \ge 1$ is a stationary Gaussian dependent sequence with a covariance function $\rho(m) \sim m^{-\alpha}$, $\alpha \in (0, 1)$ and $\sigma(\cdot)$ is a deterministic function.

For nonlinear wavelet estimator we obtain the rates under L_p risk. Furthermore, we construct an estimator for $f - \int f$. This estimator has better convergence rates than the estimator of f.

Our obtained rates of convergence agree (up to the \log term) with the minimax rates of Yang, 2001. Results reveal a dense, an intermediate and a sparse zone. In particular, in the latter two zones nonlinear estimators are better than linear ones. This phenomena was observed before in i.i.d. setting (Donoho, Johnstone, Kerkyacharian, Picard, ...).

From a probabilistic point of view the main new ingredient of our proof is a large deviation result for long memory sequences. The idea comes from martingale approximation as in Wu and Mielniczuk, 2002. It is also based on a *smoothing dichotomy* heuristic. Estimators of high-frequency coefficients should behave as if the random variables ϵ_i were independent. Estimators for low-resolution levels are influenced by long-memory. This has immediate consequences for the estimator of f. The dichotomous effect is suppressed when we consider the estimator of $f - \int f$.