JOHN PHILLIPS, University of Victoria, Victoria, British Columbia V8W 3P4 Centre-valued index of Toeplitz operators with noncommuting symbols

We begin with a unital C^* -algebra A and a unital C^* -subalgebra, Z of the centre of A. We assume that we have a faithful, unital Z-trace τ and a continuous action $\alpha \colon \mathbf{R} \to \operatorname{Aut}(A)$ leaving τ and hence Z invariant. We let δ be the infinitesimal generator of α on A.

We have in this setting a *largest* (in the sense of quasi-containment) *-representation of A on a Hilbert space which carries a *faithful*, unital u.w.-continuous $Z^{-u.w}$ -trace $\bar{\tau}: A^{-u.w} \to Z^{-u.w}$ extending τ . We assume that A is concretely represented on this Hilbert space. We denote by \mathfrak{A} and \mathfrak{Z} respectively, the ultraweak closures of A and Z. One shows that there is an u.w.-continuous action $\bar{\alpha}: \mathbf{R} \to \operatorname{Aut}(\mathfrak{A})$ extending α and leaving $\bar{\tau}$ and \mathfrak{Z} invariant.

At this point we construct a representation, $\operatorname{Ind} = \tilde{\pi} \times \lambda$ of $A \rtimes \mathbf{R}$ on a certain self-dual Hilbert-3 module $H_{\mathcal{A}}$ constructed from a certain "3-Hilbert Algebra," \mathcal{A} . We let $\mathcal{M} = \operatorname{Ind}(A \rtimes \mathbf{R})''$ which contains 3 in its centre and has a faithful, normal semifinite 3-trace $\hat{\tau}$. This construction is half the battle. We let H denote the image of the Hilbert Transform in \mathcal{M} and let $P = \frac{1}{2}(H+1)$ in \mathcal{M} . We then consider the semifinite von Neumann algebra,

$$\mathcal{N} := P\mathcal{M}P$$

with the faithful, normal, semifinite \mathfrak{Z} -trace obtained by restricting $\hat{\tau}$. For $a \in A$ we define the *Toeplitz* operator

$$T_a := P\tilde{\pi}(a)P \in \mathcal{N}.$$

We prove the following theorem.

Theorem 1 Let A be a unital C^{*}-algebra and let $Z \subseteq Z(A)$ be a unital C^{*}-subalgebra of the centre of A. Let $\tau : A \to Z$ be a faithful, unital Z-trace which is invariant under a continuous action α of **R**. Then for any $a \in A^{-1} \cap dom(\delta)$, the Toeplitz operator T_a is Fredholm relative to the trace $\hat{\tau}$ on $\mathcal{N} = P(\operatorname{Ind}(A \rtimes \mathbf{R})'')P$, and

$$\hat{\tau}$$
-ind $(T_a) = \frac{-1}{2\pi i} \tau \left(\delta(a) a^{-1} \right)$