GREG MARTIN, Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1 Z2
Sidon sets and symmetric sets of real numbers
A set S of integers is called a $B^{*}[g]$ set if for any given m there are at most g ordered pairs $\left(s_{1}, s_{2}\right) \in S \times S$ with $s_{1}+s_{2}=m$; in the case $g=2$, these are better known as Sidon sets. It is trivial to show that any $B^{*}[g]$ set contained in $\{1,2, \ldots, n\}$ has at most $\sqrt{2 g n}$ elements, but proving a lower bound of the same order of magnitude is more difficult. This problem, surprisingly, is intimately related to the following problem concerning measurable subsets of the real numbers: given $0<\varepsilon<1$, estimate the supremum of those real numbers δ such that every subset of $[0,1]$ with measure ε contains a symmetric subset with measure δ. Using harmonic analysis and relationships among L^{p} norms as well as methods from combinatorial and probabilistic number theory, we establish fairly tight upper and lower bounds for these two interconnected problems.

