DOUGLAS C. BOWMAN, Northern Illinois University, USA
Integers n for which the integer parts of $n \times \alpha+s$ are not equal to the integer parts of $n \times \beta+s$
(Joint work with Alexandru Zaharescu)
Let α and β be positive real numbers and s a real number satisfying $0 \leq s<1$. Let $\lfloor x\rfloor$ denote the greatest integer $\leq x$. Define $\Psi_{k}(\alpha, \beta ; s)$ to be the k-th positive integer n such that $\lfloor n \alpha+s\rfloor \neq\lfloor n \beta+s\rfloor$. For $i=1,2$ we compute asymptotics for the probability that $\Psi_{i}(\alpha, \beta ; 0)>Q$ for Q large as α and β range independently over a subinterval of $[0,1)$. We find the expected value of $\Psi_{1}(\beta, \alpha ; 0)$ as α and β range independently over $[0,1)$. When α, β, and s are fixed, the algebraic structure of the set of natural numbers $\left\{\Psi_{i}(\beta, \alpha ; s) \mid i \in \mathbf{Z}^{+}\right\}$is characterized.

