SHAHAB SHAABANI, Concordia University

A view from above on $JN_p(\mathbb{R}^n)$

For a symmetric convex body $K \subset \mathbb{R}^n$ and $1 \leq p < \infty$, we define the space $S^p(K)$ to be the tent generalization of $\mathsf{JN}_p(\mathbb{R}^n)$, i.e., the space of all continuous functions f on the upper-half space \mathbb{R}^{n+1} such that

$$||f||_{S^p(K)} := \left(\sup_{\mathcal{C}} \sum_{B \in \mathcal{C}} |f_B|^p\right)^{\frac{1}{p}} < \infty,$$

where, in the above, the supremum is taken over all finite disjoint collections of homothetic copies of K. It is then shown that the dual of $S_0^1(K)$, the closure of the space of continuous functions with compact support in $S^1(K)$, consists of all Radon measures on \mathbb{R}^{n+1} with uniformly bounded total variation on cones with base K and vertex in \mathbb{R}^n . In addition, a similar scale of spaces is defined in the dyadic setting, and for $1 \le p < \infty$, a complete characterization of their duals is given. We apply our results to study dyadic JN_p spaces.