HADI SALMASIAN, University of Ottawa

Counting rational points of orbital varieties over finite fields

Let \mathfrak{g} be a semisimple Lie algebra and let \mathfrak{u} be a \mathfrak{b} -stable ideal of \mathfrak{n} , where $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$ is a Borel subalgebra of \mathfrak{g} . An orbital variety of \mathfrak{g} is the intersection of a nilpotent orbit of \mathfrak{g} with \mathfrak{u} . When \mathfrak{g} is of type A, we obtain explicit formulas for the number of \mathbb{F}_q -points of an orbital variety, in terms of well-known families of symmetric functions. In the special case where \mathfrak{u} is the nilradical of a parabolic subalgebra, our result specializes to a theorem of Karp and Thomas that provides a formula in terms of coefficients of Macdonald polynomials. We also discuss some applications, e.g., a generalization (with new proof) of the Kirillov-Melnikov-Ekhad-Zeilberger formula for the number of elements of \mathfrak{n} with a given matrix rank. This talk is based on joint work with M. Bardestani, K. Karai, and S. Ram.