DANIEL TEIXEIRA, Dalhousie University

Monoidal homotopy bicategories via 2-fibrations

A strength of (∞, n) -categories lies in the rich coherence data encoded by the higher cells. However, for certain applications, it can be useful to consider the associated homotopy (n, n)-category, which retains much of the structure while simplifying the complexity. In low dimensions, a problem of interest is to give a description of this (n, n)-category in terms of algebraic models, particularly when some degree of monoidality is involved.

In this talk, I will present an algebraic description of the homotopy monoidal bicategory associated to an $(\infty, 2)$ -category, modeled as 2-fold complete Segal space. To do this, we rephrase monoidal bicategories as certain Buckley fibrations over the simplicial category Δ via a weak bar construction. Then, by viewing monoidal $(\infty, 2)$ as analogous fibrations over Δ , we adapt Romo's homotopy bicategory construction to describe the underlying monoidal bicategory. This framework also extends naturally to the symmetric setting.